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Abstract Matroids were developed independently in the 1930’s by Hassler Whitney and
Takeo Nakasawa. A matroid is an abstraction of the properties of linear independence among
collections of vectors. Formally, the definition is as follows. A matroid M is a finite set E
along with a collection I of subsets of E called independent such that:

(1) I is closed under taking subsets and

(2) whenever I, J ∈ I with |I| < |J |, there is e ∈ J − I such that I ∪ e ∈ I.

Of course, the canonical example of a “matroid” is given by a collection of vectors E being
the columns of some “matrix” A over a field F. The independent sets I is the collection
of linearly independent subsets of E. When matroid M has a matrix representation A over
some field F, we call M F-representable.

A partial field is a relatively new notion in the field of matroid representations. It is
a pair P = (R,G) in which R is a commutative unitary ring along with a subgroup G of
the group of units of R such that −1 ∈ G. A P-matrix is a matrix A over R for which
every non-zero sub-determinant of A is in G. The most famous example of such is the class
of totally unimodular matrices : Z-matrices for which every non-zero sub-determinant is in
{+1,−1}. (Totally unimodular matrices are of central importantance in the field of linear
optimization as shown by Kruskal and Hoffman in 1956.)

Theorem 1 is an early result in matroid theory which has inspired a variety of analogous
results for GF (3)-representable matroids by Whittle and GF (4)- and GF (5)-representable
matroids by Vertigan as well as Pendavingh and Van Zwam.

Theorem 1 (Tutte). If M is a binary matroid, then M has a totally unimodular represen-
tation if and only if M is F-representable for some field F with char(F) 6= 2.

Theorem 1 and its inspired results all concern the idea that a matroid representable over
some collection of different fields should be representable over some appropriate partial field.
A similar but less-explored line of inquiry concerns the notion that a matroid that is both
representable over some finite field and orientable should also have a representation over some
appropriate partial field of real numbers. (An orientation of a matroid is a generalization of
linear-independence properties for collections of R-valued vectors.) The first such result is
by Bland and Las Vergnas in their paper which first introduced oriented matroids.

Theorem 2 (Bland and Las Vergnas). If M is a binary matroid, then O is an orientation
of M if and only if O is the orientation induced by a totally unimodular representation of
M .

Lee and Scobee discovered the analogue to Theorem 2 for ternary matroids. Theorem 3
has been the extent of knowledge concerning partial-field representations of matroids that
are both orientable and representable over some finite field. The dyadic partial field is
D = (Q, 〈−1, 2〉).
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Theorem 3 (Lee and Scobee). If M is a ternary matroid, then O is an orientation of M if
and only if O is the orientation induced by a dyadic representation of M .

In this talk, we will address the situation for orientations of quaternary (i.e., GF (4)-
representable) matroids that are induced by golden-mean representations. The golden-mean

partial field is G = (R, 〈−1, g〉) in which g = 1+
√
5

2
, the golden ratio. While it is not true that

every orientation of a quaternary matroid M is induced by a golden-mean representation
of M (e.g., U3,6 has 372 orientations and only 12 of them are golden-mean orientations)
there is an easily identified subset of them that are. We will define what it means for an
orientation of a quaternary matroid to be consistently ordered and note that it is an obvious
necessary condition for a GF (4)-representation and orientation to be induced by a golden-
mean representation.

Theorem 4 (Robbins and Slilaty). If M is a quaternary matroid, then O is a consistently
ordered orientation of M if and only if O is the orientation induced by a golden-mean rep-
resentation of M .

The proof of Theorem 4 relies on Tutte’s Homotopy Theorem as well as computer verifi-
cation that the result is true for rank-3 matroids.
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